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Abstract 

A displacement parameter such as the angle of rotation or the position of a quantum 
system, or the phase of a harmonic oscillation, is to be estimated by observing the system 
with an apparatus that applies to it an operator-valued measure (o.v.m.). The o .v.m. 
minimizing the average cost of errors in the estimate is determined by quantum estimation 
theory for a system in a pure state. The best estimate of the parameter is found to be 
the more accurate, the greater the uncertainty of the dynamical variable serving as the 
infinitesimal generator of the displacement group. The relation of this result to such 
uncertainty principles as those between angle and angular momentum, and between 
oscillator phase and photon number, is discussed. A lower bound to the variance of an 
unbiased estimate of the time of occurrence of an event in the evolution of a system is 
derived from the quantum-mechanical Cram~r-Rao inequality. It is inversely proportional 
to the square of the uncertainty of the energy of the system. 

t. Quantum Estimation Theory 

The uncer ta in ty  principle for two quantum-mechanica l  variables, represented 
by Hermi t ian  o p e r a t o r s d a n d  ~ ,  is expressed by  the formula  

A J 2  A d Z  >/¼ ( ~f)2 (1.1) 

in wh ich  i ~  = [ J ,  ~ ]  is the c o m m u t a t o r  o f d  and ~ ,  and ( ~ )  deno tes  the  
expec ted  value (Rober t son ,  1929). The  uncer ta int ies  A J a n d / ' , . ~ a r e  def ined 
by 

z3¢g2 = ( ( j _  ($¢)))2, A ~ 2  = ( ( ~ _  ( ~ ) ) 2 )  (1.2) 

The  mos t  familar such relat ion connects  the uncer ta int ies  o f  the  posi t ion 
and the m o m e n t u m  ~ o f  a particle. 
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If  one variable is the angular position or azimuth 0 of  a quantum system 
about an axis, and the other is the component Jz of angular momentum along 
that axis, one expects an uncertainty relation of the form 

AJ z A0 >/? (1.3) 

for like ~ a n d  ~ these are conjugate variables in classical mechanics; but as 
indicated by Judge (1964), an operator corresponding to the azimuth 0 and 
possessing with Jz a commutator of  the necessary form cannot be defined. 
The supposed uncertainty relation 

An A0 >~ ? (1.4) 

between the number n of  photons in an harmonic oscillator and the phase 0 
of its oscillation suffers a similar impediment. These difficulties have been 
circumvented by introducing operators C and S corresponding to cos0 and 
sin 0 and by establishing for them a more complicated uncertainty relation 
that goes into (1.3) and (1.4) in the fimit of large quantum numbers. This 
approach has been thoroughly reviewed by Carruthers & Nieto (1968). Here 
we shall describe how a more general formulation of quantum measurement, 
when utilized in quantum estimation theory, permits a simpler derivation and 
interpretation of uncertainty relations involving such variables as an azimuth 
or phase. These are viewed not as dynamical variables represented by operators, 
but as parameters of the state of the system. 

Suppose that an apparatus Ap prepares a quantum system S in a state [ ~ >. 
If  the combination of apparatus and system is rotated through an angle 0 
about the z-axis, the apparatus Ap will instead prepare the system S in the 
state 

I ~(0)> = eiN°l ~ ) (1.5) 

where N, the infinitesimal generator of the group of rotations about the z- 
axis, is the operator Yz/h, h = Planck's constant h/2zr. In a Stern-Gerlach 
experiment, for instance, a beam of spin -½  particles is divided into two 
beams, in one of which the spins point upward and in the other downward. 
The 'spin-up' beam passes through a hole in a screen, which intercepts the 
'spin-down' beam. The whole device is rotated about an axis concident with 
the 'spin-up'beam, which then contains particles whose spin vector points in 
the direction 0 with respect to a y-axis normal to the beam. 

In this way the angle 0 of rotation is a parameter of  the state of  the system 
S, specifying its orientation about the z-axis. I f  you did know through what 
angle 0 the preparing apparatus had turned, you might ask how you could 
observe S in order to determine 0 as accurately as possible. The results of your 
observations and your subsequent calculations with them would yield for the 
parameter 0 an estimate 0 that in general would be somewhat in error, 0 4=- 0. 
We shall see that the azimuth 0 can be the more accurately estimated, the more 
broadly the state 1 ~9(0) > is distributed among the eigenstates of  the angular 
momentum Jz. 
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The phase 0 o of  an oscillation of frequency v is related to the origin to of  
the time scale, 

0 o = 2nVto + constant 

If  the apparatus A p  preparing the state of  the osciUator is turned on at a 
different time t o + r, the phase will be changed by 0 = 27wr, and the state of  
the oscillator will be 

t V(0)) = eiNO[ 4 )  (1.6) 

instead of I ff ). Here N is the number operator a+a, a and a + being the anni- 
hilation and creation operators for photons. The phase 0 appears as a para- 
meter of  the state of  the oscillator, and we shall study how it can best be 
estimated. 

When a quantum system is observed, it interacts with an apparatus A m  

that produces certain perceptible macroscopic phenomena such as the 
positions of meter needles or the readings of counting devices. The numbers 
so obtained may be subjected to certain calculations in order to produce 
other numbers, say z 1, z 2, • • . ,  Zm, that are considered as the results of the 
observation. We can represent them as a point z in a certain 'outcome space' 
Z. They are random variables in the sense that repeating the observation on a 
number of  systems S prepared in the same state yields in general a variety of  
sets z of  outcomes, which must be described by a probability distribution on 
the space Z. The concept of  quantum observation to be applied here associates 
with each apparatus A m an operator-valued measure (o.v.m.) mapping arbitrary" 
regions A of Z into non-negative definite Hermitian operators II(A) acting on 
the Hflbert space ~fs  of the system. It is postulated that the probability that 
the results z fall into the region A is 

Pr{z E A) = Tr [pII(A)] (1.7) 

when p was the density operator of the system S before the observation; 'Tr'  
stands for the trace. 

In order for the probability Pr {z E A} to possess the properties of  ordinary 
probability, the o.van. {1I} must satisfy certain conditions. 

(i) The empty set 0 in Z maps into the zero operator of  ~ s ,  

0 -> 11(0) = 0 (1.8) 

(ii) The entire space Z maps into the identity operator, 

Z ~ II(Z) = 1 (1.9) 

(iii) If  the regions A1, A z . . . . .  are disjoint, 

z2X 1 + a 2 + "  • . - - - > I ~ ( A  1 + A 2 + "  . .) = I I ( a l )  + I I ( A 2 ) +  , . . 

A,  ~ A 2 (q . . . =  0 (1.10) 

even unto an infinite number of  regions A i. We say that the observing appara- 
tus A m 'applies' the o.v.m. {II} to the system S. 
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The common view of  quantum measurement as yielding an eigenvalue of 
an Hermitian operator, or the eigenvalues of a number of commuting 
Hermitian operators, corresponds to the application of a projection-valued or 
orthogonal o.v.m., in which the operators II(2x) are projectors on to linear 
subspaces o f ~  s .  The need for the more general formulation has been 
brought out by Davies & Lewis (1970) and Benioff (1972a, b). 

Let the density operator p = p (01, 02 . . . . .  Om) of the system S depend on 
certain parameters 01, 02 . . . . .  0 m that are to be estimated. We represent 
these estimanda as a point 0 in a parameter space O, writing p = p(0). The 
estimates 01, 02 . . . .  , Om will be the results of observing the system S by an 
apparatus Am of the kind just described. They correspond to a point 0 in the 
space O, which is thus also the outcome space Z of the observation. The 
probability that the estimate 0 lies in a certain region A o f® when the true 
values of the parameters are specified by 0 is 

Pr{0 e AI0} = Tr [O(0) II(A)] (1.11) 

where {II} is the o.v.m, characterising the observation. We seek the o.v.m. 
that produces the most accurate estimates. 

Conceivably the purpose of an observation is to decide which of a set 
P l, P 2, • • -, PM of  density operators best represents the state of the system 
S. The space (9 now contains only a finite set of points, which can be labeled 
with the integers 1, 2 , . . . ,  M, and one can look for the o.v.m, that, for 
instance, minimises the average probability of error in choosing among them. 
This is a problem of  quantum hypothesis testing, which has application to 
optical communications (Helstrom, Liu & Gordon, t 970). If the parameter 
space ® is divided into M regions, and one asks only for the region in which 
the point 0 lies, estimation reduces to hypothesis-testing. 

Here we shall suppose that the parameter space O is continuous and that 
the o.v.m. {II} can be generated by a set of infinitesimal, non-negative definite 
Hermitian operators dII (0) associated with the points of ® in such a way that 

and in particular 

n(A) = f dII(~) (1.12) 
A 

11(0) = f dH(O) = 1 (1.13) 
(9 

An o.v.m, so generated conforms to the rules (i)-(iii). The conditional 
probability density function (p.d.f.) of  the estimates 0 is then, in accordance 
with (1 .I I), given by 

q(0 t0) dm[t = Tr [p(0) dII(0)], (1.14) 

dmO= dO I - -.  dOra being the infinitesimal volume element of ®. 
Imitating conventional statistical estimation theory, one defines a function 
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C(0, O) that assesses the cost of errors in the estimates. A cost function often 
adopted for mathematical convenience is the quadratic form 

m m 

Cti},O) = ~. ~ Gij(Oi - 0,)(0,,- Oj) (1.15) 
i = i  j = I  

where Gij is an element of a positive-definite symmetric matrix. Another useful 
cost function is 

C ( e , O )  = - I - I  8 ( 0 i  - O i )  (1.I6) 
i = 1  

In ordinary statistics it leads to the maximum-likelihood estimators, the set of 
values 0 at which the posterior p.d.f, p (0Ix) of the parameters e, given the 
results x of observation, is maximum. 

What is known in advance about the values of the parameters 0 to be anti- 
cipated is incorporated in their joint prior p.d.f, z(0). If we suppose that the 
o.v.m. {II} is applied to many copies of the system S, with the parameters 0 
of its density operator p (0) distributed according to z (0), the average cost 
incurred will be 

C[II] = ; I z(O)C(O'O)q(O[O)dmOdmO 
o o  

= Tr f S z(O)C(O, 0)p(0)dn(~) dmO (1.17) 
o o  

and we want the o.v.m. (l-I} for which this average cost is minimum. 
Equations determining the minimising or 'optimum' o.v.m, have been 

given by Holevo (1973). Defining the Hermitian operator W(8) by 

w(4) = f dine 
O 

(1.18) 

we write the average cost as 

C[It] = Tr f W(ti) dll(ti) 
o 

(t.19) 

For the optimum o.v.m, the operator 

T = J" W(~i) d][I(~i) 
o 

(1.2o) 
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must be Hermitian and satisfy 

W(ti) - T >~ 0, ¥ O E O  (1.21) 

the inequality meaning that the operator on the left is non-negative-definite. 
The operator T corresponds to a Lagrange multiplier bringing in the constraint 
(1.13). Furthermore 

[w(fi)  - 7'1 dl l (~)  - 0 (1.22) 

and dII(0) must be non-negative-definite and satisfy (1.13). The minimum 
attainable cost is then 

Cmi n = Tr T (1.23) 

as follows from integrating (1.22) over ®. 
t ^ Suppose that dII (0) generates some other o.v.m, conforming to the rules 

(i)-(iii) and hence to (I. 13). The difference between the cost it incurs and 
the minimum cost is, by (1.23), 

C[II']  - Crnin = Tr ~ [W(~i) - TI dII'(ti) 
® 

As the product of two non-negative-definite Hermitian operators has a non- 
negative trace, (1.21) shows that 

and if dII'(0) equals the operator dII({i)satisfying (1.22), this difference is 
equal to zero. 

By using the delta-function cost function (1.16) in (1.18), we find that 
the quantum-mechanical equivalent of the maximum-likelihood estimator is the 
o.v.m.,{II m} generated by non-negative-definite Hermitian operators 
dIIm (e) satisfying. 

[ Z ( O ) p  ( 0 )  - -  ' ~ ' m ]  dI-lm(O) = 0 (1.24) 

% - z ( o ) p ( o )  >1 o 

in which the Lagrange operator 

(1.25) 

~m = f z(O)P(O) dIIm(~i ) (1 .26 )  
(9 

must be Hermitian. 
As an example, consider a system whose Hilbert space is known to have 

finite dimension n. In terms of an orthogonal set of basic vectors I ~ok), the 
state vector of the system is expressed as 

n 

14J(c)>= E ckl~k>, c - - ( q ,  c2 . . . .  ,c, ,)  
k = l  
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The n complex numbers ck = Ckx + iCky can be considered as parameters of  
the density operator 

p(c) = l ~(c) ) (~(c)  I 

and we seek their maximum-likelihood estimates e = (cl ,  c2 . . . . .  Cn)- 
Because the vector I ~(c) ) must have unit length, 

E lakl 2 = E (eL + a y)= 1 
R = I  k = t  

the point e = (d Ix, e ly  . . . . .  dnx, e,,y) must lie on a (2n)-dimensional hyper- 
sphere S2n of  radius 1, which becomes the parameter space ®. I f  nothing is 
known in advance about the state of  the system, we can suppose that  the point 
e may be anywhere on S2n , and we assign it the prior p.d.f. 

z (c) = A ;~ = ½F (n)rr-n 

where A zn is the area of  the unit hypersphere. 
The maximum-likelihood estimator is the o.v.m, generated by 

drlm (e) = nA =.-11 ¢(e))(O(e) IdS 

n n 

E E eka*[ k>< mlaS 
k = l  r n = l  

where dS is an element of  area on S2n. When clII m (e) is integrated over S2n , 
the terms with k 4= m vanish, and for terms with k = m one must calculate 
the average of  ldkl 2 = a2x *2 + cky over the hypersphere; it comes out equal to 
n-1. Thus dIIm (6) integrates to the identity operator 1 as required. The reader 
can easily verify that the Lagrange operator is 

T m =A~-n 11 

and that the optimisation equations (1.24) and ( i  .25) are satisfied. The 
conditional p.d.f, o f  the point e on S2n is given by 

q(e l c) dS = Tr [O(c) dlI(e)l  = n A ~ l ( i f ( e )  l ~(c) )12 dS 

This distribution is independent of  the choice of  basic vectors I ~0k}. From it 
one can show that the quantity r = I (if(e) I if(c) ) 1, which is the absolute value 
of the complex cosine of  the angle between the true state vector and the 
estimated state vector, has the conditional p.d.f. 

¢(r) = 2n(n -- 1)r3(1 -- r2) n - 2  

in constrast to the p.d.f. 

5~o(r) = 2(n - I ) r (1  - r2) n - 2  

that it would have if one picked the point e at random on S2n. 
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In the next section we shall apply the optimi:sation equations to the esti- 
mation of a displacement parameter of a quantum system. 

2. Estimation of  Displacement 

The parameter 0 of a density operator O(0) is called a displacement para- 
meter if the density operator has the form 

p(O) = eiNO po e-iNO, P0 = p(0) (2.1) 

where N is a constant operator serving as the infinitesimal generator of the 
group of displacements of the system. During most of the discussion we shall 
suppose that 0 is an angle taking values in ® = (-rr,  rr). If 0 is the azimuth of 
the system about the z-axis, N = Jz/h; if 0 is the phase of a harmonic oscilla- 
tion, N = a+a. By scaling 0, however, we can have it represent the position of 
a particle in a finite segment -½L < x < ½L of the x-axis, imposing periodic 
boundary conditions at each end; N is then proportional to the momentum 
operator ~. Similarly TO/27r might be the time at which a signal in a trans- 
mission line or waveguide passes a certain point, T equaling the length of the 
line divided by the velocity of propagation. The operator N is then (-H/h), 
where H is the Hamtltonian operator for the electromagnetic field of the line. 

Assuming that nothing at all is known about the true value of the displace- 
ment parameter 0 before observation, we assign to it the uniform prior p.d.f. 

z(O) = (2zr) -1, - ~ < 0  ~<Tr (2.2) 

We seek the o.v.m, dIIm (0) specifying the quantum maximum-likelihood 
estimator and satisfying the optimization equations (1.24)-(1.26). We shall 
find that the same o.v.m, minimises the average cost of error as assessed by 
the cost function 

C(0, 0) = 4 sin 2 ½(0 - 0) (2.3) 

This cost is approximately (0 - 0) 2 for small errors, and it is easier to handle 
mathematically than the squared error, which for a periodic displacement 
parameter is most meaningfully defined by 

C'(0, 0) = min{(0 - 0) 2, (2zr - 0 + 0) 2} 

for 0 and 0 in (-zr, rr). Our principal interest lies in errors much smaller than 
rr/2. 

Because two estimates 0 differing by an integral multiple of 2n are equiva- 
lent, the o.v.m. {IIm} must be generated by an operator 

617[ m (0) = ~ (0) dt~, ~ (0) ~> 0 (2.4) 

for which the operator ~(0) is periodic in 0 with period 2~r. Our problem is 
invariant to a change in the origin of the coordinate 0, the prior p.d.f, z(O) 
being uniform, and the generating operator ~(0) must therefore have the 
form 

~(0) = eiNO~o e -iN~, ~o >~ 0 (2.5) 
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The conditional p.d.f, of  the estimate 0 will then be 

q(O 10) = Tr [p(0)}(0)] 

= Yr(eiNOpo e -iXOeiUO GO e-iNO) 

= Yr [P0 eiu(o -0)~0 e -iN(O - 0 ) ]  = C~(~} --  0)  

and it will depend only on the error ~ = 0 - 0, with 

g/(~0) = Tr(Po eiN~ 0 e -iN~) (2.6) 

We work with a representation whose basis is formed by the eigenstates 
I n ) of the operator N, 

NIn>=nln> (2.7) 

The eigenvalues n are either integers or odd multiples of ½, for displacing the 
system by 0 = 27r brings it either back to the same state or into a state whose 
sign is reversed. Only differences of the eigenvalues enter our equations, and 
they must be integers. We assume that the eigenvalues n are simple; how to 
modify the analysis when they are degenerate is described in the Appendix. 

The condition Ilm (®) = 1 now yields, by (2.5), 

7 r  

5nm= f <n]}(O) lm>dO 
- -  T r  

n- 

; ei(n-m)°(nl~olm> dO =27r(nl~olm)6nm (2.8) 

in terms of the Kronecker delta; all the diagonal elements of the matrix 
<n I }ol m > must be equal to (2rr) -I.  The matrix for the Lagrange operator Tm 
is diagonal, for by (1.26), (2.1), and (2.5) 

Y 
<n tT,~trn> = J <n Ip(O)~(O)tm>dO/2~r 

- -  T r  

7"( 

= f ei(n-m)O<n lPo~olrn>dO/27r = <n IPo~oIrn) 6nrn 
--~ (2.9) 

Because Tm must be Hermitian, its diagonal elements 

<n ITmln>= <n IPo~ol n> --- <n I ~oPoln> 

must be real; and because it is diagonal, T m commutes with operator N. By 
(2.1) and (2.5) the optimization equations (1.24), (1.25) reduce to 

[(2~r)-lPo - Tin] }o = 0 (2.10) 

Tm - (2rr)-lPo/> 0 (2.11) 
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At this juncture we postulate that the system S is in a pure state 

l~(O))=eiN°l@), po=l~)<~l 

with O to be estimated. The appendix to this paper shows that the solution 
of (2.9)-(2.11) is then 

r:o = (2~r) -1 i 'y><'r  I (2.12) 

with the components (n 17) of the vector t7) given in the N-representation 
by 

7n=(n[7)=exp(iargqJn),  ton4:0 

~,,, =<n I~>=  I ~'nl'y,, 
3'n = 1, ~n = 0 (2.13) 

It is also demonstrated there that the o.v.m, dII m (0) formed from ~o through 
(2.4), (2.5) satisfies the optimization equations (1.20)-(1.22) for the cost 
function in (2.3). 

The optimum o.v.m, in effect compensates for the phases of the compo- 
nents ~n einO of the state vector IV(0)) in such a way that the posterior 
p.d.f, c7(0 -- 0) of the estimates is as sharply peaked at 0 = 0 as possible. This 
p.d.f, is, by (2.6), given by 

c7(~) = (2zr)-ll 5~ l~nle-in~'[ 2, ~ = 0 - 0  (2.14) 
F/ 

The estimate 0 is unbiased because ~/(~) is an even function of ~. A measure 
of the width in ¢ of this p.d.f, c7@) is 

6¢= .f cT(~)d~/~(O)=27r [fin [ (2.15) 
--Tr 

It is the smaller, the more broadly the probabilities Pn = I ~n 12 are distributed 
among the eigenstates In ) of the infinitesimal generator N. The minimum 
average value of the cost function C(0, 0) from (2.3) is 

C m i n  = ~ (l~nl- I ~ n - l l )  2 ( 2 . 1 6 )  
n 

and this too decreases as the probability distribution {In} spreads out over 
more and more of the states T n ). 

If for instance 

Pn =" (2nm + 1)-1, In I ~ nm 

Pn=-=-O, l n l > n  m 
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sinZ(nm + ½)~ 
q ( , )  = 

27r(2n m + 1) sin2(½~) 

~ = 27r/(2n m + 1), Cmin = 8~/7r 

Thus if 0 is the azimuth about the z-axis of a quantum system of total angular 
momentumjr  h, the width 8~ of the p.d.f, of the best estimate of 0 cannot be 
less than 2rr/(2] T + i). 

When the eigenvalues n are degenerate, it is only necessary to replace t ~n 1 
in (2.14)-(2.16) by Pin/2, where 

Pn = ( ~  I Gnl ~ ) (2.17) 

is the total probability attached to the eigenvalue n of N, G n being the 
projector on to the linear subspace spanned by the eigenstates having that 
eigenvalue in common. 

The optimum o.v.m, is orthogonal if the eigenvatue spectrum of the opera- 
tor N contains all the integers from - -~  to +~. Indeed, 

di l  m (0) = (2r 0 -1  eiNO ] ,y ) ( T I e -iNO dO 

= 17 (0 ) ) (7 (0 )  [dO/2rr (2.18) 

and this will be an infinitesimal projector if the vectors ] 7(0) ) are orthogonal 
for all 0. The scalar product of two of them is 

( 'y(0)  IT(0 ' )  ) = {'yleiN(O'-O)lT ) = ~ e in(O'-O) (2.19) 
/2 

and this will equal 2rr8 (0 - 0') as required if all integers n in ( - %  ~) appear 
in the sum. For estimation of the azimuth of a system with finite total angular 
momentum, the spectrum of N is finite, and for estimation of the phase of 
an oscillation, the spectrum contains only the non-negative integers. The 
optimum o.v.m.'s for these estimates are not orthogonal, and no Hermitian 
operator exists whose measurement on S in the conventional sense yields the 
best estimate 0. 

The o.v.m. {IIm} can be approximated by a finite set of v operators 

Ok 

I I k =  ~ dIlrn(O) 
Ok--1 

O k = 2rrk/v, 1 ~ k ~ v (2.20) 

and as the estimate of 0 one can take the mid-point of the interval (Ok_ 1, Ok) 
selected by an apparatus applying this finite o.v.m. {IIk} to the system. 
According to a theorem o f Na~tmark's (19 40), as interpreted by Hotevo (1973), 
one can imbed the Hilbert space 3¢" s in the product space ~ s  ® Y-UA of the 
states of  the system S and an ancillary system A that is in a pure state 1 ~PA )- 
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The state of the combination is 

p(O) ® I~A><~A I 

Vectors lq~)C :Y~S go into the vectors I'~) ®1 ~A ), which span a subspace 
of ~ s  ® J(~:A. On Jt~s ® ~A there operates an orthogonal o.v.m, com- 
posed of projectors E k such that for all states i ,Is ) in Jr:s, 

GEk(I"~) ® I ff :>)=(nkl '~>) ® I~A) 

where 

G = I  ® ItPA)(~AI 

is the operator projecting arbitrary vectors in :~(~s ® °~A on to Jt°~. Applying 
this projection-valued o.v.m, to the combination of  S and A yields the same 
probabilities 

Pr{O E (Ok_ 1, 0k) 10) = Tr [p(0)IIk] 

as applying the approximate o.v.m. {IIk}. It is equivalent to measuring the 
Hermitian operator 

P 
b" = E ~(0k_, + 0k)Ek 

k = l  

on S and A together. By taking the number v of  elements of  this o.v.m, large 
enough, the optimum estimate 0 can be approximated as closely as desired. 

The cosine and sine operators C and S defined by Carruthers & Nieto 
(1968) arise directly from the optimum o.v.m, for estimating the parameter 
0 when the components ~n - (n I ~ ) of the state [ t~ ) in theN-representation 
are all real. (A phase factor e m common to all components fin is unobservable, 
and we suppose it has been eliminated.) We call such a state a real state, keeping 
in mind that its components may well not be real in any other representation. 
The phases of the components of the displaced states I if(0)) are then 
proportional to n. [Note added in proof: In this context 'real' means ~n = [ tPn t-] 

We define the non-Hermitian operator E by 

E = f eiO dlIm(O) 
-- Tf 

~7 
e i o e  iNO I ~[ ) ( '~ I e - i N O  d O / 2 7 r  (2.21) 

where now "rn = (n 17) ~ i because all ~n are real. The matrix elements of 
E_ in the N-representation are, by (2.13), 

ff 

(nlE_lm)= ~ e i(n-m+l)O dO/2rr=fn,m_l 
-- TT 
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so that 

E _ t m )  = I m -  1 ) (2.22) 

unless m is the least eigenvalue m' of the spectrum of N, in which case 

E _ l m ' ) =  0 (2.23) 

The conjugate operator 

7r 

E+ = f e -i° dIIm(O ) (2.24) 
- -  " l r  

similarly yields 

E + l m ) = l m +  l )  , rn:C:m" 

E+I m" ) = 0 (2.25) 

where m" is the largest eigenvalue of N. The operators C and S are then 
defined as usually by 

i 
C = ½(E+ + C ) ,  S = ~ (e+ - E_) 

These operators have been further studied by Zak (1969), Lerner et al. (1970), 
Aharonov et al. (1973), and Volkin (I973). Perlman & Troup (1969) formu- 
lated the cosine and sine operators for angle variables in a manner similar to 
ours, but without interpreting them in terms of estimation. The optimum 
o.v.m, for estimating the parameter 0 is equivalent to the generator of the C 
and S operators only when the basic state ] 7; ) is real. Otherwise the generator 
of C and S will yield estimates 0 whose p.d.f. 

q'(0 ]0) = (2n)-I I ~ 72n e-i(g-°)12 (2.26) 
n 

is broader than need be. 
Suppose for example that the phase of a coherent oscillation is to be 

estimated, the basic state of the system being a coherent state I P) of the kind 
described by Glauber (1963). We can take the amplitude p as real; N = p2 is 
the mean number of  photons in the oscillation. In the number representation, 
with N = a+a, 

72n = (n ]p )  = (n!)-l/2t.ln exp (_½p2), n ~> 0 

and the minimum average cost is, from (2.16), 

Cmi. =2 1 --lVV2e -~ ~ -~((n + 1) -1/2 
n = 0  
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By using an asymptotic formula given by Carruthers & Nieto (1968), we find 
that for ~V >> 1 

C mi  n = (4iV) -1 [1 + O(.N-1)] 

and as in this limit Cmi n is asymptotically equal to the mean-square error, 

<(0 - 0)2> - (4K0 -1, ~ > >  1 

Because the probabilities Pn = I~bn 12 have the Poisson distribution, AN 2 = IV, 
and 

AN2((O -- 0) 2> ~ ¼, _N>> 1 (2.27) 

Thus the mean-square error in an estimate 0 of the phase of the coherent 
oscillation can be as small as (4AN2) -1 when the mean quantum number IV 
is large. 

3. Estimation o f  Position 

A particle situated somewhere on a segment - 1 L  ~< x ~< 1L of the x-axis 
is in a state 

t ~(x)  ) = e i~x/h] ~ ) (3.1) 

where ~ is the momentum operator and I ~ > is the state of the particle when 
its wavepacket is centered at x = O. The parameter x of the density operator 

p(x) = e i'~x/h ] ~ )( t~ le -i~x/h 

is to be estimated. When we impose periodic boundary conditions at the ends 
of the segment, supposing it periodically repeated, the momentum operator 

acquires eigenvalues 

p ,  = nh/L, h = 27rh (3.2) 

for all integers n in (_0% oo). We identify the parameter 0 of the previous 
section with 27rx/L and the generator N with L ~ / h .  The probability attached 
to the nth eigenvalue Pn is now 

Pn = l((Pn I ff )12 (3.3) 

where I P,,)) is a normalised eigenvector of the operator ~.  This operator 
induces a resolution of the identity 

~lPn))((Pnl  = 1 (3.4) 
17 

of  the Hilbert space • s -  
Intending to pass to the limit L --> 0% we define new eigenvectors tPn) by 

IPn ) = (L/h) 1/: IPn )) (3.5) 
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Because the eigenvalues Pn are spaced by h/L, sums over n go in this limit into 
integrals as 

7- -,fdp 

Thus the resolution of  the identity in (3.4) becomes 

f lP)(pldp = 1 

From (2.14) the conditional p.d.f, of  the maximum-likelihood estimate 
of the position of  the wavepacket is q (~? I x) = c7 (2 - x),  where with 
y = Y c - x  

qO') = L-I] ~ ] ((Pn I ff )1 exp (-iPny/h) [a 

h-11 ; I (P I ~P > l e-iPY/~ dp 12 (3.6) 

in the limit L --> ~.  When the components (p I ~ ) of  the basic state I ~ ) in 
the momentum representation are, within a common insignificant phase 
factor e m, all real and non-negative, the posterior p.d.f, of  the estimate 2 
becomes 

q(y)  = ](y I ~ >12, y = o? - x (3.7) 

where [Y ) is an eigenstate of  the position operator ~ ,  

..~[Y)=Y lY), (p [y)=h -x/2 exp(-ipy/h) (3.8) 

The best estimate of  the position o f  the wavepacket is then made by an 
apparatus applying the orthogonal o.v.m, generated by 

~[*>=*1.> 
that is, in the conventional sense of  the term it 'measures' the position 
operator ~ .  

That the optimum estimator of the location of  a system should, for a large 
class of  states, involve the position operator ~. is not surprising, but  it is 
instructive to see how ~ arises from estimation theory as the best estimator 
of a parameter of  the state of  the system, rather than as a dynamical variable. 
The outcome of  'measuring' ~. gives imt the exact position of  a system such 
as a quantum particle, but an estimate of  the location of  its wavepacket. 

If the momentum wave-function (p I ~ ) is not real, the same conditional 
p.d.f, q(2 Ix) of  the estimate of  position as in (3.6) can be attained, but not 
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by measuring the operator ~ ; the o.v.m, whose matrix elements in the 
momentum representation are 

(p'] ~)(~b ]p") 
(p' ] II(d~) [p" ) = h [ (p'] ~b ) ( ~b [p") ] exp [i(p' - p")2/h] dR 

must be applied instead. It too is orthogonal and corresponds to measuring 
the operator ~.' whose momentum representation is 

(p,] ~ , ]p , , )=h_ ( p ' [ ~ ) ( O l p " )  6 ' ( p ' - p " )  

z ] ( p ' l ¢ ) ( ¢ l p " ) l  

where ~'(x) is the derivative of the delta-function. As in general, the optimum 
o.v.m, is adapted to the class of states anticipated. 

4. The Energy-Time Uncertainty Relation 

The epoch T of  a particular event in the temporal evolution of a system S 
can be regarded as a parameter of its density operator 

p('c) = e-iHr/hp o e iHr/~ (4.1) 

in which H is the Hamiltonian operator of the system, assumed independent 
of  time. The event might be the time at which a particle crosses a given plane 
or leaves a certain region of space. The difficulties of constructing an operator 
corresponding to an arrival time r and thence, by (1.1), finding an uncertainty 
relation between time and energy have been analysed by Allcock (1969). 
Nevertheless, Wigner (1972) has derived a time-energy uncertainty relation in 
terms of the continuous spectrum of the energy of the system, and Ekstein & 
Siegert (197t) have developed one for the time a particle remains within a given 
volume. 

An observation to fix the epoch ~- must start at some instant t o and end at a 
later time to + T. One might reasonably assume a uniform prior p.d.f, z(v) ~- T -1 
tbr 7, adopt a suitable cost C(~, 7) of errors in estimating 7, and attempt to 
solve the equations of Section 1 to find the best o.v.m. The o.v.m, would be 
applied at tile end of the interval (to, t o + T) to determine at what time within 
it the event occurred. Only if the motion of the system S is periodic with 
period T, however, can the technique of Section 2 be utilised. A periodic system 
is exemplified by a lossless transmission line of length L containing a coherent 
signal propagated along it at velocity c, L = cT. Estimating the epoch ~- is 
equivalent to estimating the phase 0 of the carrier of the signal, and if the 
signal occupies only a narrow band of frequencies, the analysis in Section 2 
applies. Periodic systems form a limited class, however, and for an aperiodic 
motion that method is inapplicable because the integrations over 0 < 0 < T 
do not reduce the optimisation equations to the simple forms in (2.9)-(2.11 ). 

A lower bound to the variance Vat ~ of an unbiased estimate of a parameter 
such as the epoch z can be established by means of the quantum-mechanical 
form of the Cram~r-Rao inequality (Helstrom, 1973). If dl~(¢) generates the 
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o.v.m, applied to the system S by an apparatus for estimating r, the conditional 
expected value of the estimate ¢ is,with t o = 0, 

T 
E(¢lr)  = Tr f "~p(r)dll(¢) 

o 

and the estimate is unbiased if Ef f i r )  = r. Then 

Vat ~- = E[(¢ - r)2 Ir] 

.>- (Tr pL2) -1 = (Tr [L(Op/Sr)] }- '  (4.2) 

where L is the symmetrised logarithmic derivative (s.l.d.) operator defined by 

a_£ = {(Lo + pL) (4.3) 
Or 

and evaluated at the true value of the epoch r. 
If the system is in a pure state, 

] ~ r } =  e-iHr/~ [ ~O) 

Po = I ~o><'¢ 'o I (4.4) 

equation (4.3) can be solved by introducing a complete orthonormal set of 
states I ~n ), of  which t ~r  ) = I t) 1 ) is the first member, 

By Schr6dinger's equation, which is equivalent to (4.1) and (4.4) 

Op i 
Or = ~ (pH - Hp) (4.5) 

and 

apl.,, i i ( 
> = 7, <~11Hl~m>~nl - Ittl ~1>~1m (4.6) 

Forming the matrix dements  of (4.3), we obtain similarly 

ap t~m 1 , (~n{-~ )=l(~llLt?,n)6nl +'~(@nlL,~l)61m (4.7) 

Hence 

( ~ a l L I @ a ) = 0  

2i 
(~ lILt @m) = ( ~ m  IL t ffl)* = ~ (4 I IHI @m), 

(~nlLl~m)=O, n > l , m > l  

m > l  

(4.8) 
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The quantity appearing on the right-hand side of (4.2) is now 
3p 

Tr[L(3p/3z)] = ~ ~. ( q ; n l ~ l ~ , n ) ( t i n  [Zl~Jn) 
m gt 

= 4 f i  -2 ~ [ ( ~ l l H l f r n ) l  2 
m > l  

By using the completeness relation 

(4.9) 

we can write this as 

Tr [L(3p/~-)] 

= 4h-2 {~l(~l  lHl~m)(@m[Hl~21}- I(~)l [H[~ll)[2 } 

=4h-2[(ff~lH2lffx) - I (~ l lHl f f l ) l  z] 

= 4h-2 AE 2 (4.1 1) 

where 2d~ is the uncertainty of  the energy in the state I~1) = Iff~). 
Hence from (4.2) the variance of an unbiased estimate of the epoch ~- is 

bounded below by 
h 2 

Var ~ ~> (4.12) 
4AE 2 

The more precisely the energy of the system is fixed during its preparation, 
the less accurately will it be possible to estimate the epoch of some distinctive 
event in its subsequent evolution. 

5. Discussion 

The uncertainty relation between two dynamical variables d a n d  N is usually 
interpreted in terms of measurements of a large ensemble of systems, all prepared 
in the same state. On half the systems J i s  measured, on the other half ~.  The 
results of the two sets of measurements are random variables with variances 
A J 2  and A ~ 2  defined by (1.2). Whatever the common state of the systems, 
the product &~dA~cannot fall below a certain limit set by (1.1). 

The uncertainty relations arising from quantum estimation theory bear a 
different interpretation. A great many systems are prepared in states specified 
by a density operator p(0)  depending on some parameter or set of  parameters 
e,  which are themselves random variables with a joint prior p.d.L z(e) .  The 
values e = (01,0 2, • . . ,  Ore) are known in each case to the preparer of  the 
system, but not to the observer. All the systems are observed by an apparatus 
A m ,  possibly containing a computer, which produces a set of m numbers 01, 
. . . .  0m as its estimates e of 6. As random variables they have a conditional 
probability density function q(0 [e). The differences O i - Oi are errors whose 
seriousness is assessed by some cost function C(0, e) .  The theory seeks a lower 

l~m>(~mt = 1 (4.10) 
m=l  
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bound to the average value of that cost over the entire ensemble of systems 
with its variety of" true values of the parameters 0. 

We have seen how in the estimation of a single displacement parameter 0 of 
a pure state, the conditional p.d.f, q(010) of its maximum-likelihood estimate 
0 is the broader, the narrower the distribution Pn = (~]Gnl~) of probability 
among the eigenstates of the infinitesimal generator N of the displacement 
group. Except in special cases the observing apparatus A m does not measure an 
Hermitian operator corresponding in the conventional sense to the displacement 
0 ; in general there exists no such operator in whose spectrum of eigenvalues 
the outcomes 0 are constrained to lie. 

There are two reasons for observing a quantum system. One is to verify 
that an apparatus Ap prepares systems in the manner predicted. To this end 
one or more kinds of observational apparatus apply their defining operator- 
valued measures to an ensemble of systems prepared by Ap, and one checks 
whether the outcomes are described by the correct probability distributions. 

The other reason for observing a system is to estimate certain parameters 
0 1 , 0  2,  " • ", 0 m of its state, or-as  in quantum hypothesis testing-to choose 
the one of a set of possible density operators p 1, P 2, • • -, PM that best represents 
the state of the system. The class of density operators P(0) to which the 
observational apparatus must be adapted is fixed by what is known about how 
the quantum system has been prepared. By taking this viewpoint one avoids 
speciously identifying the outcome of a measurement as the value 'possessed' 
by a dynamical variable of the system before its interaction with the observing 
apparatus. The outcome is instead accepted as only an estimate of some para- 
meter of the state of the system, and the way is opened to handling parameters 
such as angles, phases, and epochs that have no apparent representation as 
quantum-mechanical operators. A previous article (Helstrom, 1974) showed 
how the conceptual difficulties associated with simultaneous measurement of 
non-commuting observables can be circumvented by treating quantum measure- 
ment as parameter estimation. 

Just as it is unknown bow in general to construct an apparatus to measure a 
dynamical variable represented by an arbitrary Hermitian operator, so is it un- 
known how to build one to apply a given operator-valued measure to a quan- 
tum system. A future theory may delimit in some way the class of admissible o.v.m.'s. 
Quantum estimation theory can be regarded as furnishing lower bounds to the 
average costs of errors in parameter estimates, but whether those bounds can 
always be attained by real physical apparatus is an open question. 

Appendix 

In order to verify that the solution in (2.12)-(2.13) satisfies the reduced 
optimisation equations (2.10)-(2.11), we first calculate the elements of the 
matrix Polo in the N-representation, 

(n [Polo Lm) = (nt~)(~ I7)(7 [rn)/21r 

= (2~r) -1 ~Yn')'* ~ t~')'k =K~n')'* (A.1) 
k 
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where by (2.13) 

/(=(2~) -~ ~ I~ki 
k 

Hence by (2.9) the Lagrange operator"~m is represented by the matrix 

(n lTmlm}= Kl~n lSnm 

and its diagonal elements are real, as required. 
For (2.10) the (nm) matrix element is, by (A.1), (A.3), and (2.13), 

(2rr) - lK~n7 * - (2rr) -j (n I,~ m tn)(n t7)(71m) 

(2~O-'Ovq, .v*~  * = - Kt ~ n [ " / n T m )  = 0 

(A.2) 

(A.3) 

This verifies (2.10). 
In order to show that the operator on the left-hand side of(2.1 l) is non- 

negative-definite, we form for an arbitrary state l~), using (2.13), 

(~l;olD =I(~'I~H 2 =1 ~k~kl* 2 
k 

= l ~ t@kll/e'Yk~lffktl/212 ~ ~[¢~l~[~'ml21@ml 
k k m 

= 2rr(fl q~mt ~'> 

by the Schwarz inequality and (A.3). Hence 

<~'1 [ ~ m  - (27r)-12o]  I f } />  0 

as required for (2.11). 
Turning now to the minimisation of the average cost when assessed by the 

function in (2.3), we calculate the operator W(0) from (1.18). Because of (2.1) 
and (2.2) and the fact that the cost function depends only on 0 - O, 

W(O) = e iN~ W o e - i N g  ( A . 4 )  

where in the N-representation 

(n tWotm}=2[~n[26nm * * (A.5) - Cng'n--18n,m+1 -- ~ n ~ + l ~ 5 ~ , m - - 1  

as is easily obtained by writing for (2.3) 

C(0, 0) = 2 - e i(o -0)  _ e-i(~-0) (A.6) 

As for the maximum-likelihood estimator, the Lagrange operator T has a 
diagonal matrix 

(nlTIm) = 2rr(nlWo~o[m)fnm 

by (1.20), (2.4), (2.5), (2. I2), and (2.13), where 

2rr(n[ Wo~olm) = ~ (hi Wolk) (k lT}(TIm)  
k 

= (21~,,12W, * • • -- ~ n ~ n - l ' Y n - 1  -- ~n f fn+l ' ) ' n+ l )Tm 
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Hence 

(n IT[m) = (21 ~n 12 - l t~nt~n-1] - -  I ~ n ~ T n + l  [ ) S n r n  (A.8) 

and T is Hermitian as required. 
The optimisation equations (1.21)-(1.22) now take the reduced form 

Wo - T ~> 0 (A.9) 

(W e - T)~ o = 0 (A.1 0) 

because T commutes with e iNO . From (A.7), (A.8), and (2.13) we obtain 

27r(n IT{o[ m) = (21 ~nl 2 - [ ~n~n+l l  - [~n ~n-1  [) ~'n')'* 

=(21~nlZTn ~nlCn-ll ~,,I~,,+1 )V., 

= 27r(nlWo~olm) 

verifying (A. 10). 
The matrix representation of W o - T has, by (A.5) and (A.8), real elements 

on the diagonal, and the elements on each side of  the diagonal are 

(n[(W 0 - T ) l n  1) = * - - ~ , ~ ¢ . - 1  

(n - I I(W o - ~l') In) = - ~n-1  ~* ( i . 11 )  

All the rest of  the elements of  this matrix are zero. In order to calculate its 
eigenvalues and thus check its non-negative-definiteness, we could work out the 
determinant, 

det[X6nm - (n[(W o - T) [m) l  

Upon expanding it, we should find the off-diagonal elements in (A.1 I)  occurring 
only together as a product, which equals I fin 7;n-112. Their phases disappear 
and have no bearing on whether (W o - T) is non-negative-definite. The question 
of definiteness can therefore be decided for the new matrix (nl(W~ - T ) [m)  
obtained by replacing all ~n'S in W o by their absolute values t~nl- We now find 
tbr an arbitrary state I~'), after some calculation, 

(~'I(W~)-T)I~')  = ~ I ~ n @ n - l l l ~ ' n - l - ~ n l  2 > 0  
n 

as required for (A.9). From (A.8), equation (2.16) for the minimum cost Crnin 
follows easily. 

When the eigenvalues of  the infinitesimal generator N are degenerate, the 
eigenstates common to a single eigenvalue n span a linear subspace fqn of  J~fs. 
Let Gn be the projector on to ~n,  and let the dimension of ~n  be un. An 
orthonormal basis is set up in (~n by starting with the vector 

{~nl} = Pnl/=Gnl ~ ) 

Pn = ( f f lGn t~ )  (A.12) 

The remaining u n - 1 basis vectors IT,x) are chosen by a Gram-Schmidt  pro- 
cedure from the eigenstates spanning ~n.  The array of vectors [~nk) for all n 
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and k forms an or thonormal  basis for representing arbitrary vectors and 
matrices in ~ s -  

In this augmented N-representat ion the matr ix of  the density operator  Po = 
I $ ) ( $ f  takes on a block form; the element in the upper left-hand corner of  each 

block GnPoG m is equal to 

_ p t / z p l / 2  (A.13) (~nliP0177ml}---n ~rn 

The rest of  the elements are zero. The matrix of  the operator Go in (2.5) has 
(2rr) -1 on the diagonal. In the remaining blocks Gn~oGm, m ~ n, the upper 
left-hand element is (27r) -1 and the others are O; thus 

Go =(21r) -1 [1 + Z Z Pnl /2Pml /2Gnl t ) ) (~ lGm]  
n m ¢ n  

in verifying the reduced optimisation equations (2 . t0) ,  (2.11), and (A.9)-  
(A.10), only the upper left-hand elements of  each block in the several matrices 
come into play, and the calculations go through just  as before. 
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